Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
The traditional method is to heat the compound in an oven, on a hot plate or over a Bunsen burner. Waters of hydration are loosely bound in the compound and can be driven off at temperatures below the melting point of the compound. So the answer is heating.
Answer:
650 grams
Explanation:
Given that acetylene gas reacts with oxygen to produce caobon dioxide, water and heat and the unbalnced equation is

Gram-formula mass of
g/mol
So, mass of 1 mole of acelylene is 26 grams
Therefore, mass of 25 moles of acelylene=25x26=650 grams
Hence, the mass of 25 moles of acelylene is 650 grams
The data gotten from ice cores could scientists tell the about future climate change.