We are most likely to find water in the form of gas in the atmosphere.
Answer:

Explanation:
Hello there!
In this case, according to the given combustion reaction of octane, it is possible for us to perform the stoichiometric method in order to calculate the mass of octane that is required to consume 300.0 g of oxygen by considering the 2:25 mole ratio, and the molar masses of 114.22 g/mol and 32.00 g/mol respectively:

Regards!
Answer is: because alkaline metals (group IA metals) are the strongest reducing agents and most reactive metals.
Reducing agent<span> is an element or compound that loses an </span>electron<span> to another </span>chemical species<span> in a </span>redox <span>chemical reaction and they have been oxidized.
Alkaline metals tend to lose only one electron in redox reaction.</span>
The [OH⁻] of the solution is 5.37×10⁵ M.
<h3 /><h3>What is pOH?</h3>
This is the negative logarithm to base 10 of hydroxy ion [OH⁻] concentration.
To calculate the hydroxy ion [OH⁻] concentration we use the formula below.
Note:
- pOH = 14-pH
- pOH = 14-9.77
- pOH = 4.27
Formula:
- [OH⁻] = 1/
................. Equation 1
Given:
Substitute the value into equation 1
- [OH⁻] = 1/

- [OH⁻] = 5.37×10⁵
Hence, The [OH⁻] of the solution is 5.37×10⁵ M.
Learn more about hydroxy ion concentration here: brainly.com/question/17090407