Explanation:
1)

Mass of NaOH = m
MOlar mass of NaOH = 40 g/mol
Volume of NaOH solution = 1.00 L
Molarity of the solution= 1.00 M


A student can prepare the solution by dissolving the 40. grams of NaOH in is small volume of water and making that whole volume of solution to volume of 1 L.
Upto two significant figures mass should be determined.
2)
(dilution equation)
Molarity of the NaOH solution = 
Volume of the solution = 
Molarity of the NaOH solution after dilution = 
Volume of NaOH solution after dilution= 


A student can prepare NaOH solution of 1.00 M by diluting the 0.500 L of 2.00 M solution of NaOH with water to 1.00 L volume.
Upto three significant figures volume should be determined.
Answer:
30 hot dogs
Explanation:
It is given that :
There are 4 packets of eight wieners, i.e. 4 x 8 = 32 wieners
There are 3 bags of ten buns, i.e. 3 x 10 = 30 buns
One hot dogs need 1 bun and 1 wiener to make a hot dog.
There are 30 buns, so 30 hot dogs can be made out by using all the 30 buns and the 30 wieners out of the 32 wieners.
Therefore, 30 hot dogs.
And the number of extra wieners left = 32 - 30 = 2 wieners.
This may help you
<span>You need to use some stoichiometry here. The only way to do that is if you're working in moles. Since you're given grams of Al, you can convert that moles by dividing by the molar mass.
Then from looking at the coefficients in your equation, you can see that for however many moles of Al react, the same numbers of moles of Fe will be produced, but only half as many moles of Al2O3 will be produced.
To go back to grams, multiply the moles of each product that you get by their molar masses!</span>
PH = -log [H+]
pH = -log (1.0x10^-4) = -(-4) = 4 or A
Answer:
The statements are definitions to chromatography terms which have been highlighted below.
Explanation:
Match the chromatography term with its definition.
Volumetric Flow Rate = The volume of solvent traveling through the column per unit time.
Retention time = The elapsed time between sample injection and detection.
Adjusted Retention Time = The time required by a retained solute to travel through the column beyond the time required by the un -retained solvent.
Linear Flow Rate = The distance traveled by the solvent per unit time.
Retention factor = Describes the amount of time that a sample spends in the stationary phase relative to the mobile phase. It is sometimes also called the capacity factor or capacity ratio.
Relative Volume = Volume of the mobile phase required to elute a solute from the column.
Relative Retention = Ratio of the adjusted retention times or retention factors of two solutes. It is sometimes also called the separation factor.
Partition coefficient = The ratio of the solute concentrations in the mobile and stationary phases.