Answer:
3.55atm
Explanation:
We will apply Boyle's law formula in solving this problem.
P1V1 = P2V2
And with values given in the question
P1=initial pressure of gas = 1.75atm
V1=initial volume of gas =7.5L
P2=final pressure of gas inside new piston in atm
V2=final volume of gas = 3.7L
We need to find the final pressure
From the equation, P1V1 = P2V2,
We make P2 subject
P2 = (P1V1) / V2
P2 = (1.75×7.5)/3.7
P2=3.55atm
Therefore, the new pressure inside the piston is 3.55atm
Explanation:
The balanced chemical equation of the reaction is:

From the balanced chemical equation,
1 mole of propane forms ------ 3 mol. of
gas.
The molar mass of propane is 44.1 g/mol.
One mole of any gas at STP occupies --- 22.4 L.
Hence, 44 g of propane forms (3x22.4 L=) 67.2 L of CO2 gas at STP.
Answer:
Thus, 67.2 L of CO2 is formed at STP.
4 moles of water are produced
Explanation:
- 4 moles of water are produced when 5 moles of hydrogen is reacted with 2 moles of oxygen gas
- The balanced equation given is when 2 moles of hydrogen reacts with 1 mole of oxygen and it forms 2 moles of water.
- The equation we have to solve is the 5 moles of hydrogen is reacting with 2 moles of oxygen gas, we can write the equation as
- This is the balanced equation when 5 moles of hydrogen reacts with 2 moles of oxygen. The balanced equation means the number of hydrogen atoms and oxygen atoms on both sides would be equal in number.
Answer: because it consists of more than one element, which are hydrogen and oxygen in a covalent bond.
Ionic bonds usually occur between metal and nonmetal ions. For example, sodium (Na), a metal, and chloride (Cl), a nonmetal, form an ionic bond to make NaCl. In a covalent bond, the atoms bond by sharing electrons. Covalent bonds usually occur between nonmetals.