Answer:
During the first quarter or last quarter phase of the moon, when the sun and moon are perpendicular (at right angles) to each other in relation to the Earth, the tidal gravitational pulls interfere with each other, producing weaker tides, known as neap tides.
Explanation:
Answer:
A. an alcohol - induced blackout
Electron is a fundamental Particle by JJ Thomson so it was truly difficult to say that electron is a negative charge
Answer:
hello some parts of your question is missing below is the complete question
A 60.0 kg archer standing on a friction-less ice shoots a 100g arrow at a speed of 80.0 m/s to the right .When the arrow is released, how does the the force on the arrow (by the bow) compare to the force on the archer (by the bow)?
Answer : The force on the arrow is larger than the force on the archer because the arrow has a higher final velocity
Explanation:
we can compare The force on the arrow to the force on the archer by using the final velocities of the archer and the arrow ,hence The force on the arrow is larger than the force on the archer because the arrow has a higher final velocity and this is according to Newton's law which states for a every action there is an equal reaction i.e the force applied on the arrow will be the opposite of the force on the archer
Answer:
Vertical distance= 3.3803ft
Explanation:
First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:
Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h
Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h
time= 0.00012731h × (3600s/h)= 0.458316s
With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:
Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m
Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft
This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.