Well, Flammability is: What happens when combustible liquids (liquids that can burn) ignite (catch on fire) and burn easily at normal working temperatures.
Hope I helped!
- Amber
Correct answer: Option D, <span>
K = 5.04 × 10^52</span>
Reason:
We know that,
Ecell =

,
where n = number of electrons = 2 (in present case)
K = equilibrium constant.
Also, Ecell = <span>+1.56 v
Therefore, 1.56 = </span>

Therefore, log (K) = 52.703
Therefore, K = 5.04 X 10^52
Answer : The molal freezing point depression constant of liquid X is, 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of liquid X (solvent) = 450 g = 0.450 kg
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X = 
i = Van't Hoff factor = 1 (for non-electrolyte)
= Molal-freezing-point-depression constant = ?
m = molality
Now put all the given values in this formula, we get


Therefore, the molal freezing point depression constant of liquid X is, 
The reaction
→
is best classified as double displacement reaction.
Those reaction in which two compounds react by exchanges of ions to form two new compounds is called double displacement reaction. The easiest way to identify double displacement reactions is to check to see whether the cations exchanged anions with each other or not . Always balanced chemical equation is used to determine.
There are three types of double displacement reaction which is given as,
- Precipitation
- Neutralization
- Gas formation
The real world example of double displacement reaction is combining vinegar and baking soda to create homemade volcano.
learn more about double displacement reaction
brainly.com/question/13870042?
#SPJ4
Answer:
Kc = 3.72 × 10⁶
Explanation:
Let's consider the following reaction:
NH₄HS(g) ⇄ NH₃(g) + H₂S(g)
At equilibrium, we have the following concentrations:
[NH₄HS] = 0.196 M (assuming a 1 L flask)
[NH₃] = 9.56 × 10² M
[H₂S] = 7.62 × 10² M
We can replace this data in the Kc expression.
![Kc=\frac{[NH_{3}] \times [H_{2}S] }{[NH_{4}HS]} =\frac{9.56 \times 10^{2} \times 7.62 \times 10^{2}}{0.196} =3.72 \times 10^{6}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BNH_%7B3%7D%5D%20%5Ctimes%20%5BH_%7B2%7DS%5D%20%7D%7B%5BNH_%7B4%7DHS%5D%7D%20%3D%5Cfrac%7B9.56%20%5Ctimes%2010%5E%7B2%7D%20%20%5Ctimes%207.62%20%20%5Ctimes%2010%5E%7B2%7D%7D%7B0.196%7D%20%3D3.72%20%5Ctimes%2010%5E%7B6%7D)