Answer:-
2747.7 Cal mol -1
Explanation:-
Molar heat of Fusion is defined as the amount of heat necessary to melt (or freeze) 1 mole of a substance at its melting point.
Atomic mass of Iron = 55.845 g mol-1
Mass of Iron = 200 g
Number of moles of Iron = 200 g / (55.845 g mol-)
= 3.581 moles
Heat released = 9840 Cal
Molar heat of Fusion = Heat released / Number of moles
= 9840 Cal / 3.581 moles
= 2747.7 Cal mol -1
The molarity of formic acid is 100 mM or
. The dissociation reaction of formic acid is as follows:

The expression for dissociation constant of the reaction will be:
![K_{a}=\frac{[HCOO^{-}][H^{+}]}{[HCOOH]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%5BH%5E%7B%2B%7D%5D%7D%7B%5BHCOOH%5D%7D)
Rearranging,
![[HCOO^{-}]=\frac{K_{a}[HCOOH]}{[H^{+}]}](https://tex.z-dn.net/?f=%5BHCOO%5E%7B-%7D%5D%3D%5Cfrac%7BK_%7Ba%7D%5BHCOOH%5D%7D%7B%5BH%5E%7B%2B%7D%5D%7D)
Here, pH of solution is 4.15 thus, concentration of hydrogen ion will be:
![[H^{+}]=10^{-pH}=10^{-4.15}=7.08\times 10^{-5}M](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-4.15%7D%3D7.08%5Ctimes%2010%5E%7B-5%7DM)
Similarly,
thus,

Putting the values,
![[HCOO^{-}]=\frac{(1.78\times 10^{-4}M)(100\times 10^{-3}M)}{(7.08\times 10^{-5}M}=0.2511 M](https://tex.z-dn.net/?f=%5BHCOO%5E%7B-%7D%5D%3D%5Cfrac%7B%281.78%5Ctimes%2010%5E%7B-4%7DM%29%28100%5Ctimes%2010%5E%7B-3%7DM%29%7D%7B%287.08%5Ctimes%2010%5E%7B-5%7DM%7D%3D0.2511%20M)
Therefore, the concentration of formate will be 0.2511 M.
Answer:
Explanation: In a chemical formula, the symbols for each element in the compound are followed by subscripts that tell us how many of that element are in the compound. The subscripts that follow each element's symbol indicate how many of that element are in the compound. Notice how H is located in more than one place.
Explanation:
Answer:
2.5×10⁶ s
Explanation:
From the question given above, the following data were obtained:
Rate constant (K) = 2.8×10¯⁷ s¯¹
Half-life (t½) =?
The half-life of a first order reaction is given by:
Half-life (t½) = 0.693 / Rate constant (K)
t½ = 0.693 / K
With the above formula, we can obtain the half-life of the reaction as follow:
Rate constant (K) = 2.8×10¯⁷ s¯¹
Half-life (t½) =?
t½ = 0.693 / K
t½ = 0.693 / 2.8×10¯⁷
t½ = 2.5×10⁶ s
Therefore, the half-life of the reaction is 2.5×10⁶ s