Answer: There are 4.375 moles in 2.5 L of 1.75 M 
Explanation:
To calculate the number of moles for given molarity, we use the equation:
Molarity of solution = 1.75 M
Volume of solution = 2.5 L
Putting values in equation , we get:

Newton's second law of motion can be formally stated as follows:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
This verbal statement can be expressed in equation form as follows:
a = Fnet / m
Answer:
See explanation
Explanation:
We have been told in the question that the equation of the reaction is; 1 slice of cheese + 2 slices of bread = 1 Grilled cheese sandwich ( mole ratio is, 1:2:1) .
Then the reagents are 10 slices of cheese 30 slices of bread. It then follows that 10 slices of cheese should be combined with 20 slices of bread according to the mole ratio.
However, we have 30 slices of bread and 10 slices of cheese so cheese is the limiting reactant while bread is the reactant in excess.
Yes, the number of glilled chese sandwishes he can make is decided by the limiting reactant because it gets used up most.
The correct answer is Potassium Chloride.
<span />
We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
First, we need to determine the required moles of CaCl₂. We have 500 mL (0.500 L) of a 0.360 M solution (0.360 moles of CaCl₂ per liter of solution).

Then, we will convert 0.180 moles to grams using the molar mass of CaCl₂ (110.98 g/mol).

To prepare the solution, we weigh 20.0 g of CaCl₂ and add it to a beaker with enough distilled water to dissolve it. We stir it, heat it if necessary, and when we have a solution, we transfer it to a 500 mL flask and complete it to the mark with distilled water.
We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
You can learn more about solutions here: brainly.com/question/2412491