Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Explanation:
Sodium metal reacts rapidly with water to form a colourless basic solution of sodium hydroxide (NaOH) and hydrogen gas (H2). The reaction continues even when the solution becomes basic. The resulting solution is basic because of the dissolved hydroxide.
Answer: B:
Explanation:
This is the most reasonable answer
The two compounds shown indeed have tha same molecular formula, C5 H11 NO2. One of the molecules has a group NH2 and a group COOH, the other molecule has a NOO group, that makes that the two isomers have a completely different structure, with the atoms arranged in a completely different order. <span>This kind of isomers fits in the definition of structural isomers, so the answer is structural isomers.</span>