Answer:
Explanation is in the answer
Explanation:
The pH of the buffer solution does not change appreciably because the strong acid (free H⁺) reacts with conjugate base of buffer producing more weak acid. pH formula of buffers is (Henderson-Hasselbalch formula):
pH = pKa + log ( [A⁻] / [HA] )
The addition of strong acid decreases [A⁻] increasing [HA]. pH change just in the log of the ratio of [A⁻] with [HA], that is a real little effect over pH of the buffer solution.
I believe the answer is carbon dioxide. Because when carbon dioxide and water combine in the atmosphere it forms a very weak acid called carbonic acid, which falls to the Earth's surface as precipitation.
Answer:
6gkwkskekekkr
Explanation:
jakksksksjjdjdjdjdjdjdkskjj
The synthesis of
Methyl Phenyl Ether is shown below,
The synthesis takes place in two steps,
Step 1: Formation of Sodium Phenoxide: Phenol being more acidic than Alcohols with
pKa ≈ 10 can loose its proton attached to oxygen atom, as the resulting phenoxide ion is stabilized by resonance. Therefore, when phenol is treated with NaOH (bBase) it looses proton and forms Sodium Phenoxide.
Step 2: Formation of Methyl Phenyl Ether: The Phenoxide ion formed in first step when treated with Dimethyl Sulfate produces Methyl Phenyl Ether through a
Williamson's Ether synthesis Reaction. Dimethyl sulfate is a well known alkylating agent when treated with phenols, thiols and amines. Dimethyl sulfate readily transfers the methyl group and forms NaSO₄CH₃.
The reaction is as follow,
Answer:
The emission spectrum is formed when the electrons of a particular atom absorb energy and are excited (in this case by heating), reaching higher energy levels.
You can see it for example with an experiment where we light alcohol mixed with banana chips (it has potassium). The burning alcohol emits heat that makes potassium atoms excite and these in turn emit something red, orange light. If we add for example boric acid you see a green light.
Explanation: