The concept used to solve this problem is that given in the kinematic equations of motion. From theory we know that the change in velocities of a body is equivalent to twice the distance traveled by acceleration, in other words:
Where,
Final and initial velocity
a = Acceleration
x = Displacement
For the given case, the displacement is equivalent to the height (x = h) and the acceleration is the same gravitational acceleration (a = g). In turn we do not have initial speed therefore
Our values are given as
Replacing we have that,
Therefore the speed with which the liquid sulfur left the volcano is 529.15m/s
The potential energy would be zero. Only kinetic energy is present in this case. To find out what the answer is we do the equation: mv^2/2 soo...
KE =mv^2/2
KE= 1(2^2)/2 which the answer will come up by 2 Joules.
Answer:
∑ τ =0, L₀ =
Explanation:
In a circular turning movement, when the arms are extended and then contracted in two possibilities:
- They are lowered the force of gravity is what pulls them, the tension of the muscle becomes zero to allow this movement.
In this movement the force is vertical(gravity) and the movement of the center of mass of each arm is vertical, so that the work is the weight value of the arm by the distance traveled by the center of mass.
- Another possibility is that the arms have stuck to the body, in this case the person's muscles perform the force, this force is horizontal and the displacement is the horizontal of the center of mass of the arms from the extended position to the contracted
In these movements the torque of the external force is equal for each arm, but in the opposite direction, so they are canceled where a net torque of zero, this causes the angular momentum to be preserved, which changes is the moment of inertia of the system and therefore you must also change the angular velocity to keep your product constant
∑ τ =0
L₀ =
I₀ w₀ = I w
Answer:
The direction of the B-field is in the +y-direction.
Explanation:
The corresponding formula is
This means, we should use right-hand rule.
Our index finger is pointed towards +x-direction (direction of velocity),
our middle finger should point towards the direction of the B-field,
and our thumb should point towards the +z-direction (direction of the force).
Since our middle finger in this situation points towards +y-direction, the B-field should be in +y-direction.