1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wolverine [178]
3 years ago
12

Suppose that you travel to a planet that has 4 times the Earth's mass and 4 times the Earth's radius. Calculate how much more or

less you would weigh on this planet compared to your weight on Earth.
Physics
1 answer:
sweet [91]3 years ago
4 0

Mass on the planet would be 4 times the mass on Earth.

<u>Explanation: </u>

<u />

Given -  

Let the mass of Earth = Me

Let the radius of Earth = Re

Mass of the planet, Mp = 4Me

Radius of the planet, Rp = 4Re

Weight on other planet, W = ?

Weight on planets is determined by the gravitational force

Gravitational force, F = GMm/r²

where, G = gravitational constant

M = Mass of the planet

m = our mass

r = radius of the planet

Gravitational force on Earth:

F = G X Me X ma/ Re²                                       (ma = mass on earth)

Gravitational force on planet :

F = G X 4Me X mₓ/ (4Re)²                                  (mx = mass on other planet)

Dividing both the equations, we get

mx = 4ma

Therefore, mass on the planet would be 4 times the mass on Earth.

You might be interested in
A charge is divided q1 and (q-q1)what will be the ratio of q/q1 so that force between the two parts placed at a given distance i
Arturiano [62]

Answer:

q / q_{1} = 2, assuming that q_{1} and (q - q_{1}) are point charges.

Explanation:

Let k denote the coulomb constant. Let r denote the distance between the two point charges. In this question, neither k and r depend on the value of q_{1}.

By Coulomb's Law, the magnitude of electrostatic force between q_{1} and (q - q_{1}) would be:

\begin{aligned}F &= \frac{k\, q_{1}\, (q - q_{1})}{r^{2}} \\ &= \frac{k}{r^{2}}\, (q\, q_{1} - {q_{1}}^{2})\end{aligned}.

Find the first and second derivative of F with respect to q_{1}. (Note that 0 < q_{1} < q.)

First derivative:

\begin{aligned}\frac{d}{d q_{1}}[F] &= \frac{d}{d q_{1}} \left[\frac{k}{r^{2}}\, (q\, q_{1} - {q_{1}}^{2})\right] \\ &= \frac{k}{r^{2}}\, \left[\frac{d}{d q_{1}} [q\, q_{1}] - \frac{d}{d q_{1}}[{q_{1}}^{2}]\right]\\ &= \frac{k}{r^{2}}\, (q - 2\, q_{1})\end{aligned}.

Second derivative:

\begin{aligned}\frac{d^{2}}{{d q_{1}}^{2}}[F] &= \frac{d}{d q_{1}} \left[\frac{k}{r^{2}}\, (q - 2\, q_{1})\right] \\ &= \frac{(-2)\, k}{r^{2}}\end{aligned}.

The value of the coulomb constant k is greater than 0. Thus, the value of the second derivative of F with respect to q_{1} would be negative for all real r. F\! would be convex over all q_{1}.

By the convexity of \! F with respect to \! q_{1} \!, there would be a unique q_{1} that globally maximizes F. The first derivative of F\! with respect to q_{1}\! should be 0 for that particular \! q_{1}. In other words:

\displaystyle \frac{k}{r^{2}}\, (q - 2\, q_{1}) = 0<em>.</em>

2\, q_{1} = q.

q_{1} = q / 2.

In other words, the force between the two point charges would be maximized when the charge is evenly split:

\begin{aligned} \frac{q}{q_{1}} &= \frac{q}{q / 2} = 2\end{aligned}.

3 0
2 years ago
A plane flying at a steady speed of 100 m/s accelerates to 150 m/s in 10 seconds. What is the plane’s acceleration?
Rashid [163]

A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.

<h3>What is acceleration?</h3>

Acceleration is the change in velocity over time.

A plane is flying initially at 100 m/s (u) and it accelerates to 150 m/s (v) in 10 s (t). We can calculate its acceleration using the following expression.

a = v - u / t = (150 m/s - 100 m/s) / 10 s = 5 m/s²

A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.

Learn more about acceleration here: brainly.com/question/14344386

#SPJ1

5 0
1 year ago
A machine
In-s [12.5K]

Answer:

Power_input = 85.71 [W]

Explanation:

To be able to solve this problem we must first find the work done. Work is defined as the product of force by distance.

W = F*d

where:

W = work [J] (units of Joules)

F = force [N] (units of Newton)

d = distance [m]

We need to bear in mind that the force can be calculated by multiplying the mass by the gravity acceleration.

Now replacing:

W = (80*10)*3\\W = 2400 [J]

Power is defined as the work done over a certain time. In this way by means of the following formula, we can calculate the required power.

P=\frac{W}{t}

where:

P = power [W] (units of watts)

W = work [J]

t = time = 40 [s]

P = 2400/40\\P = 60 [W]

The calculated power is the required power. Now as we have the efficiency of the machine, we can calculate the power that is introduced, to be able to do that work.

Effic=0.7\\Effic=P_{required}/P_{introduced}\\P_{introduced}=60/0.7\\P_{introduced}=85.71[W]

3 0
3 years ago
Most of the substances around you are _______
monitta

Answer:

gravity

Explanation:

5 0
3 years ago
Read 2 more answers
Current is produced when charges are accelerated by an electric field to move to a position of lower
Vaselesa [24]
Current is created when charges are quickened by an electric field to move where the position of lower temperature. An electric current is a stream of electric charge. In electric circuits, this charge is regularly conveyed by moving electrons in a wire.
8 0
3 years ago
Other questions:
  • When is thermal equilibrium achieved between two objects?
    15·2 answers
  • Ground water erosion can result in the formation of stalactite and stalagmite in caves.true or false
    9·2 answers
  • Which are the simplest pure substances that cannot be broken down into any other substances
    10·1 answer
  • A tennis player standing 12.6m from the net hits the ball at 3.00 degrees above the horizontal. To clear the net, the ball must
    12·2 answers
  • Help!! I’ll give brainliest!! Which person will hear the highest pitch?
    11·2 answers
  • A resistor is connected across an oscillating emf. The peak current through the resistor is 2.0 A. What is the peak current if:
    5·1 answer
  • A runner accelerates to 4.2 m/s2 for 10 seconds before winning the race. How far did he/she run?
    10·2 answers
  • Answer the following questions.
    5·1 answer
  • A car with speed v and an identical car with speed 2v both travel the same circular section of an unbanked road. If the friction
    7·1 answer
  • 13. The
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!