I am fairly certain it's D. Good luck!
Answer:
I think it is just potential
Explanation:
If it’s right pls mark the brainliest
Answer:

Explanation:
As we know by first law of thermodynamics that for ideal gas system we have
Heat given = change in internal energy + Work done
so here we will have
Heat given to the system = 2.2 kJ
Q = 2200 J
also we know that work done by the system is given as

so we have



Answer:
The acceleration of the sprinter is 1.4 m/s²
Explanation:
Hi there!
The equation of position of the sprinter is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the sprinter at a time t.
x0 = initial position.
v0 = initial velocity.
t = time.
a = acceleration.
Since the origin of the frame of reference is located at the starting point and the sprinter starts from rest, then, x0 and v0 are equal to zero:
x = 1/2 · a · t²
At t = 9.9 s, x = 71 m
71 m = 1/2 · a · (9.9 s)²
2 · 71 m / (9.9 s)² = a
a = 1.4 m/s²
The acceleration of the sprinter is 1.4 m/s²
<span>The
kinetic energy is the work done by the object due to its motion. It is
represented by the formula of the half the velocity squared multiply by the
mass of the object. In this problem, you have two vehicles, the other one is large and the
other one is small. Let us assume that they travel with the same velocity. Note
that the kinetic energy is proportional to the mass of the object. So when you
increase the mass of the other, it also increases the kinetic energy of that
object. The same holds true for the two vehicles. The larger the vehicle, its
kinetic energy is also large and therefore its stopping distance will be longer
than that of the smaller vehicle.</span>