Answer:
3.59 m/s
Explanation:
We are given that
Mass of lineman,m=85 kg
Mass of receiver,m'=90 kg
Speed of receiver,v'=5.8 m/s
Speed of lineman,v=4.1 m/s

We have to find the their velocity immediately after the tackle.
Initial momentum,
According to law of conservation of momentum
Initial momentum=Final momentum=


Answer: find the answer in the explanation
Explanation:
When a magnet is placed at the centre of the paper, and the nails are sprinkled on the paper, what will happen to the nails is that, the nails will form a pattern on the paper according to the magnetic field of the bar magnetic pole.
Other phenomena you can observe are:
1.) The nails will align themselves and show some lines of forces which is equivalent to the magnetic field lines
2.) The direction of the line of forces
3.) The strength of the magnetic field pole.
I would say A Because it weighs more than the water
A. 9 J
In a force-distance graph, the work done is equal to the area under the curve in the graph.
In this case, we need to extrapolate the value of the force when the distance is x=30 cm. We can easily do that by noticing that there is a direct proportionality between the force and the distance:

where k is the slope of the line. We can find k, for instance chosing the point at x=5 cm and F=10 N:

And now we can calculate the work by calculating the area under the curve until x=30 cm, F=60 N:

B. 24.5 m/s
The mass of the arrow is m=30 g=0.03 kg. The kinetic energy of the arrow when it is released is equal to the work done by pulling back the bow for 30 cm:

where m is the mass of the arrow and v is its speed. By re-arranging the formula and using W=9 J, we find the speed:
