Answer:
The amount of time for the whole journey is 8 hours.
Explanation:
A truck covered 2/7 of a journey at an average speed of 40 mph. Representing 1 the total of the trip traveled, then the rest of the distance traveled is calculated as: 
So if the truck covered the remaining 200 miles at
, this means that
of the trip represents the 200 miles. So, to calculate the total distance traveled by the truck, you apply the following rule of three: if
of the route represents 200 miles, the integer 1 (which represents the total of the route), how many miles are they?

miles= 280
So the total distance traveled is 280 miles. Since speed is the relationship between the space traveled by an object and the time used for it (
), then if the average of the entire trip was 35 mph and the distance traveled 280 miles, the time is calculated as:

time= 8 h
<u><em>
The amount of time for the whole journey is 8 hours.</em></u>
<u><em /></u>
A) Work energy relation;
Work =ΔKE ; work done = Force × distance, while, Kinetic energy = 1/2 MV²
F.s = 1/2mv²
F× 4×10^-2 = 1/2 × 5 ×10^-3 × (600)²
F = 900/0.04
= 22500 N
Therefore, force is 22500 N
b) From newton's second law of motion;
F = Ma
Thus; a = F/m
= 22500/(5×10^-3)
= 4,500,000 m/s²
But v = u-at
0 = 600- 4500,000 t
t = 1.33 × 10^-4 seconds
Eric is writing about the cell wall.
Chloroplast is for photosynthesis.
Mitochondria releases energy from respiration.
Nucleus controls the activities of the cell.
But the cell wall supports and gives structure to the cell.
Electricity is a form of energy. Electricity is the flow of electrons. All matter is made up of atoms, and an atom has a center, called a nucleus. The negative charge of an electron is equal to the positive charge of a proton, and the number of electrons in an atom is usually equal to the number of protons. Hope this helped. ;)
The equations are analogous to that for linear movement:
acceleration = (final velocity - initial velocity) / time
acceleration = (3000 rpm - 0 rpm) / 2.0 s
a) acceleration = 1500 rpm/s or 25 rp(s^2)
For the displacement
displacement = initial velocity*time + 0.5*acceleration*time^2
displacement = (0)*(2 s) + (0.5)(25 rps^2)*(2 s)^2
b) displacement = 50 revolutions