I = Current q = total charge t =time taken to pass electron from a certain point. Number of Electrons =2.5×1019. Total charge q=ne=2.5×1019×1.6×10−19=2.5×1.6= 4C.
Answer:
The final velocity of the runner at the end of the given time is 2.7 m/s.
Explanation:
Given;
initial velocity of the runner, u = 1.1 m/s
constant acceleration, a = 0.8 m/s²
time of motion, t = 2.0 s
The velocity of the runner at the end of the given time is calculate as;

where;
v is the final velocity of the runner at the end of the given time;
v = 1.1 + (0.8)(2)
v = 2.7 m/s
Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.
Answer: Atoms consist of 3 particles: protons, electrons, and neutrons. The nucleus of the atom contains the protons and neutrons. The outer regions contain the electrons
Explanation:
Answer:
a =45 m/s2
t = 2 seconds
Explanation:
Hi, to answer this question we have to apply the next formula:
v^2 = u^2 +2 a d
Where:
v = final velocity = 90 m/s
u = initial velocity = 0 m/s (shots from rest)
a = acceleration (m/s2)
d = distance = 90m
90^2 = 0^2 + 2a(90)
Solving for a:
8,100= 180 a
8,100/180 = a
a = 45 m/s^2
For time:
v = u + at
90 = 0 + 45t
90/45=t
t =2 seconds
The force required to start an object sliding across a uniform horizontal surface is larger than the force required to keep the object sliding at a constant velocity once it starts.
The magnitudes of the required forces are different in these situations because the force of kinetic friction is less than the force of static friction. <em>(d)</em>