The work done by the turbine will be 708.2 kJ/kg. The work done by the turbine is the difference of the enthalpy at inlet and exit.
<h3 /><h3>What is temperature?</h3>
Temperature directs the hotness or coldness of a body. In clear terms, it is the method of finding the kinetic energy of particles within an entity. Faster the motion of particles, more the temperature.
If the given turbine is assumed to be reversible;
(Initial pressure)=60 mpa = 60 bar
(Initial temperature)=600° C
(Exit pressure)=600 kpa=6 bar
The heat balance equation is;

The change in the entropy is;

The work done by the turbine is;

Hence,the work done by the turbine will be 708.2 kJ/kg.
To learn more about the temperature, refer to the link;
brainly.com/question/7510619
#SPJ4
Answer:
V = 20.5 m/s
Explanation:
Given,
The mass of the cart, m = 6 Kg
The initial speed of the cart, u = 4 m/s
The acceleration of the cart, a = 0.5 m/s²
The time interval of the cart, t = 30 s
The final velocity of the cart is given by the first equation of motion
v = u + at
= 4 + (0.5 x 30)
= 19 m/s
Hence the final velocity of cart at 30 seconds is, v = 19 m/s
The speed of the cart at the end of 3 seconds
V = 19 + (0.5 x 3)
= 20.5 m/s
Hence, the final velocity of the cart at the end of this 3.0 second interval is, V = 20.5 m/s
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
The melting of polar ice is one effect of the greenhouse effect, or also global warming.
The greenhouse effect, as defined by Merriam-Webster, is "the <span>warming of the surface and lower atmosphere of a planet (as Earth or Venus) that is caused by conversion of solar radiation into heat in a process involving selective transmission of short wave solar radiation by the atmosphere, its absorption by the planet's surface, and reradiation as infrared which is absorbed and partly reradiated back to the surface by atmospheric gases".
In short, "</span>the warming of the surface and lower atmosphere of a planet".