Answer:
à in unit vector notation = 12.26485i + 7.54539j
B in unit vector notation = 16.3516i + 3.11529j
Explanation:
The detailed steps and calculation is shown in the attachment.
Answer:
The positively charged ball moves between both charged plates till the plates and the ball all become neutral.
Check Explanation for more.
Explanation:
Let the ball be in square brackets, and the plates in normal brackets.
(+) [+] (-)
From the law that like charges repel and unlike charges attract.
The positive ball would go first to the negatively charged plate. After which, the ball would hold more negative charges overall than before.
Because the ball is now more negatively charged, it then travels towards the positive plate. In the same manner, the ball would transfer negative electrons to the positive plate.
So, when leaving the positive plate, the ball would be more positive and be drawn towards the negative plate once more. In doing so, it would make the negative plate more positive.
Then, the ball again holds more negative electrons and is drawn towards the positive plate once more.
This back and forth process continues until the once-positive and once-negative plates become neutral, that is, they are discharged.
The ball hanging on the insulated thread becomes neutral too at this point.
Hope this Helps!!!
Assuming that the angle is the same for both ropes, then D. is the answer. You have to consider also if the ropes are close together or far apart and if the force to move the object is in line with the ropes or perpendicular to them.
<span />
Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³