Answer: the answer would be four thousand
Explanation: hope this helps
It is 6 g/cm3 because density cannot be negative, and it is not speed in which the unit would be m/s.
Answer:
ΔE> E_minimo
We see that the field difference between these two flowers is greater than the minimum field, so the bee knows if it has been recently visited, so the answer is if it can detect the difference
Explanation:
For this exercise let's use the electric field expression
E = k q / r²
where k is the Coulomb constant that is equal to 9 109 N m² /C², q the charge and r the distance to the point of interest positive test charge, in this case the distance to the bee
let's calculate the field for each charge
Q = 24 pC = 24 10⁻¹² C
E₁ = 9 10⁹ 24 10⁻¹² / 0.20²
E₁ = 5.4 N / C
Q = 32 pC = 32 10⁻¹² C
E₂ = 9 10⁹ 32 10⁻¹² / 0.2²
E₂ = 7.2 N / C
let's find the difference between these two fields
ΔE = E₂ -E₁
ΔE = 7.2 - 5.4
ΔE = 1.8 N / C
the minimum detection field is
E_minimum = 0.77 N / C
ΔE> E_minimo
We see that the field difference between these two flowers is greater than the minimum field, so the bee knows if it has been recently visited, so the answer is if it can detect the difference
A single fixed pulley can be used to raise or lower lightweight objects.
Option b
<u>Explanation:</u>
A pulley is a simple machine tool which is used to make lifting or lowering tasks easy. A single fixed pulley is a system involving only one pulley fixed on a constant rigid support with a rope wrapped around the wheel. Such a system can be used only to change the direction of applied force in raising or lowering small, lightweight objects which need minimal work force.
A single fixed pulley system helps only in redirecting the applied force direction by using a rope and wheel assembly. The work done in such a case remains the same and hence it is not preferred to use it in lifting heavy objects. Neither is the required force reduced in case of a single fixed pulley system. A movable pulley helps in achieving (A) and (C).