Answer:
The distance the car travels is 115500 m in S.I units
Explanation:
Distance d = vt where v = speed of the car and t = time taken to travel
Now v = 99 km/h. We now convert it to S.I units. So
v = 99 km/h = 99 × 1000 m/(1 × 3600 s)
v = 99000 m/3600 s
v = 27.5 m/s
The speed of the car is 27.5 m/s in S.I units
We now convert the time t = 70 minutes to seconds by multiplying it by 60.
So, t = 70 min = 70 × 60 s = 4200 s
The time taken to travel is 4200 s in S.I units
Now the distance, d = vt
d = 27.5 m/s × 4200 s
d = 115500 m
So, the distance the car travels is 115500 m in S.I units
Answer:
<em>500Joules</em>
Explanation:
Kinetic energy = 1/2mv²
m is the mass of the wood
v is the velocity
Given
Mass = 10kg
Velocity v = 10m/s
Substitute into the formula and get KE
KE = 1/2 * 10 * 10²
KE = 1/2 * 1000
KE = 500Joules
<em>Hence the kinetic energy of the wood during delivery is 500Joules</em>
Answer:
50,000 V/m
Explanation:
The electric field between two charged metal plates is uniform.
The relationship between potential difference and electric field strength for a uniform field is given by the equation

where
is the potential difference
E is the magnitude of the electric field
d is the distance between the plates
In this problem, we have:
is the potential difference between the plates
d = 15 mm = 0.015 m is the distance between the plates
Therefore, rearranging the equation we find the strength of the electric field:

B-Pitcher C-Catcher H-Strike I-Umpire G-Strike Zone E- Foul Ball F- Ball J- Pick-off D-Error A- Shortstop. I think (Sorry for them being out of order. I had to break them down)