Answer:
v₂ = 0.56 m / s
Explanation:
This exercise can be done using Bernoulli's equation
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Where points 1 and 2 are on the surface of the glass and the top of the straw
The pressure at the two points is the same because they are open to the atmosphere, if we assume that the surface of the vessel is much sea that the area of the straw the velocity of the surface of the vessel is almost zero v₁ = 0
The difference in height between the level of the glass and the straw is constant and equal to 1.6 cm = 1.6 10⁻² m
We substitute in the equation
+ ρ g y₁ =
+ ½ ρ v₂² + ρ g y₂
½ v₂² = g (y₂-y₁)
v₂ = √ 2 g (y₂-y₁)
Let's calculate
v₂ = √ (2 9.8 1.6 10⁻²)
v₂ = 0.56 m / s
Refer to the diagram shown below.
The basket is represented by a weightless rigid beam of length 0.78 m.
The x-coordinate is measured from the left end of the basket.
The mass at x=0 is 2*0.55 = 1.1 kg.
The weight acting at x = 0 is W₁ = 1.1*9.8 = 10.78 N
The mass near the right end is 1.8 kg.
Its weight is W₂ = 1.8*9.8 = 17.64 N
The fulcrum is in the middle of the basket, therefore its location is
x = 0.78/2 = 0.39 m.
For equilibrium, the sum of moments about the fulcrum is zero.
Therefore
(10.78 N)*(0.39 m) - (17.64 N)*(x-0.39 m) = 0
4.2042 - 17.64x + 6.8796 = 0
-17.64x = -11.0838
x = 0.6283 m
Answer: 0.63 m from the left end.
Answer:

Explanation:
We are given that
Mass of glass,

Volume,
Mass of water=
Density of water=
Temperature of hot water,
Specific heat of glass,
Specific heat of water,







Answer:
if its so easy why dont u do it .
Explanation:
Answer:
(a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Explanation:
Given that,
Power factor = 0.6
Power = 600 kVA
(a). We need to calculate the reactive power
Using formula of reactive power
...(I)
We need to calculate the 
Using formula of 

Put the value into the formula


Put the value of Φ in equation (I)


(b). We draw the power triangle
(c). We need to calculate the reactive power of a capacitor to be connected across the load to raise the power factor to 0.95
Using formula of reactive power


We need to calculate the difference between Q and Q'

Put the value into the formula


Hence, (a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.