Answer:
θ’ = θ₀ / 2
we see that the resolution angle is reduced by half
Explanation:
The resolving power of a radar is given by diffraction, for which we will use the Rayleigh criterion for the resolution of two point sources, they are considered resolved if the maximum of diffraction of one coincides with the first minimum of the other.
The first minimum occurs for m = 1, so the diffraction equation of a slit remains
a sin θ = λ
in general, the diffraction patterns occur at very small angles, so
sin θ = θ
θ = λ / a
in the case of radar we have a circular aperture and the equation must be solved in polar coordinates, which introduces a numerical constant.
θ = 1.22 λ /a
In this exercise we are told that the opening changes
a’ = 2 a
we substitute
θ ‘= 1.22 λ / 2a
θ' = (1.22 λ / a) 1/2
θ’ = θ₀ / 2
we see that the resolution angle is reduced by half
Answer:
7/16 <em>is </em><em>the </em><em>probability </em><em>of </em><em>given </em><em>querty</em>
Answer:
9.9 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
If the body has started from rest then the initial velocity is 0. In order to find the velocity just before hitting the water then the distance at which the downward motion stops is irrelevant.
Hence, the speed of the diver just before striking the water is 9.9 m/s
Answer:
9.62 minutes 0r 0.16 of an hour
Explanation:
Speed = distance/time
300mph = 48.1 m/t
xt
300t = 48.1
÷300
t = 48.1/300
t = 0.16033333333 hr
0.16033333333 x 60 = 9.62 minutes
60 minutes in an hour
9.62/60= 0.16033333333 hr
So, around 10 minutes.
Hope this helps!
The first one, as the mass is higher so it accelerates more