Answer:
b) total energy input equals total energy output
Explanation:
The first law of thermodynamics is a generalization of the conservation of energy in thermal processes. It is based on Joule's conclusion that heat and energy are equivalent. But to get there you have to get around some traps along the way.
From Joule's conclusion we might be tempted to call heat "internal" energy associated with temperature. We could then add heat to the potential and kinetic energies of a system, and call this sum the total energy, which is what it would conserve. In fact, this solution works well for a wide variety of phenomena, including Joule's experiments. Problems arise with the idea of heat "content" of a system. For example, when a solid is heated to its melting point, an additional "heat input" causes the melting but without increasing the temperature. With this simple experiment we see that simply considering the thermal energy measured only by a temperature increase as part of the total energy of a system will not give a complete general law.
Instead of "heat," we can use the concept of internal energy, that is, an energy in the system that can take forms not directly related to temperature. We can then use the word "heat" to refer only to a transfer of energy between a system and its environment. Similarly, the term work will not be used to describe something contained in the system, but describes a transfer of energy from one system to another. Heat and work are, therefore, two ways in which energy is transferred, not energies.
In an isolated system, that is, a system that does not exchange matter or energy with its surroundings, the total energy must remain constant. If the system exchanges energy with its environment but not matter (what is called a closed system), it can do so only in two ways: a transfer of energy either in the form of work done on or by the system, either in the form of heat to or from the system. In the event that there is energy transfer, the change in the energy of the system must be equal to the net energy gained or lost by the environment.
Solar because it is transfered through light
Answer:
a. The human body has nearly the same density as salt water after exhaling.
b. The human body will always float in the Dead Sea.
Explanation:
According to the concept of floating on the basis of density, any body that is put in a fluid of density greater than its own density will always float due to the force of buoyancy from the liquid.
- The portion of the object submerged while the object is floating depends upon the density of the object as compared to the density of the fluid. This is governed by the equation:

where:
density of the fluid
density of the object
volume of the object submerged in the fluid
total volume of the object
Generally speaking, solid turns to a liquid at it's melting point. Ice turns to water at 0 degrees Celcius. Chocolate melts at 25 degrees Celcius-Yum! Ice (solid) thaws when the temperature rises above 32 degrees Fahrenheit, becoming water (liquid). Other solids (oddly) vary. your welcome
Answer:
2.5E24/4.168351075775951e
=4.168351075775951e