<h3> Learning task 1</h3>
1. <u> </u><u> </u><u>3</u><u>.</u><u> </u><u> </u> 3. <u> </u><u> </u><u>1</u><u>. </u><u> </u>
4. 2
2. <u> </u><u> </u><u> </u><u>5</u><u>.</u><u> </u> 4. <u> </u><u> </u><u>6</u><u>. </u><u> </u>
9. 13
5. <u> </u><u> </u><u> </u><u>3</u><u>. </u> 6. <u> </u><u> </u><u> </u><u>7</u><u>. </u><u> </u>
5. 9
Step by step explanation:
hopefully that's help
When you make the product of a binomial of the kind x + a times other binomial that is of the kind x - a, you obtain another binomial (not a trinomial), so any example with that form will be a counterexample that disproves the conjecture:
(x + a) * (x - a) = x^2 - a^2
For example, (x +3) * (x - 3) = x^2 - 9. So, not always the product of two binomials is a trinomial.
It will take approx.65 of caffeine remaining after 6 hours