Answer:
If there is a system of magnets being held in place, there is potential energy. When you let go, the potential energy converts to kinetic energy and the magnets move. Putting the system of magnets close together which creates an opposing force.
Explanation:
To find:
Which type of mechanical wave is a water wave?
Explanation:
The water wave is a combination of longitudinal and transverse waves. They are a type of wave called surface waves. The surface waves are the waves that transmit energy in the interface between two mediums.
Final answer:
Thus the correct answer is option C.
Answer:
a) 0.049 m
b) Yes, increase
Explanation:
Draw a free body diagram.
In the y direction, there are three forces acting on the feeder. Two vertical components of the tension forces in each rope pulling up, and weight force pulling down.
Apply Newton's second law to the feeder in the y direction.
∑F = ma
2Ty − mg = 0
Ty = mg/2
Let's say the distance the rope sags is d. The trees are 4m apart, so the feeder is 2m horizontally from either tree. Using Pythagorean theorem, we can find the length of the rope on either side:
L² = 2² + d²
L = √(4 + d²)
Using similar triangles, we can write a proportion using the forces and distances.
Ty / T = d / L
Substitute:
(mg/2) / T = d / √(4 + d²)
Solve for d:
Td = mg/2 √(4 + d²)
T² d² = (mg/2)² (4 + d²)
T² d² = (mg)² + (mg/2)² d²
(T² − (mg/2)²) d² = (mg)²
d² = (mg)² / (T² − (mg/2)²)
d = mg / √(T² − (mg/2)²)
Given m = 2.4 kg and T = 480 N:
d = (2.4) (9.8) / √(480² − (2.4×9.8/2)²)
d = 0.049 m
b) If a bird lands on a feeder, this will increase the tension in the rope to support the bird's weight.
<span>The reason that things look wavy in the heat over a hot grill or stove is that the air temperature is not stable. Hot air naturally rises, so as air comes off the hot surface, it rises for a bit before rapidly cooling and sinking to be heated again. This constant mixing of hot and cool air produces vibration. This vibration affects how we see the light moving through the air, making it look wavy.</span>