Answer:
Fr = 48 [N] forward.
Explanation:
Suppose the movement is on the X axis, in this way we have the force of the engine that produces the movement to the right, while the force produced by the brake causes the vehicle to decrease its speed in this way the sign must be negative.
∑F = Fr
![F_{engine}-F_{brake} =F_{r}\\F_{r}=79-31\\F_{r}=48[N]](https://tex.z-dn.net/?f=F_%7Bengine%7D-F_%7Bbrake%7D%20%3DF_%7Br%7D%5C%5CF_%7Br%7D%3D79-31%5C%5CF_%7Br%7D%3D48%5BN%5D)
The movement remains forward, since the force produced by the movement is greater than the braking force.
Answer:
Velocity
Explanation:
<u>Velocity</u> is the rate that an object moves in certain direction.
a)
We use the formula :
m1v1i + m2v2i = m1v1f + m2v2f
Substituting the values in:
4.0kg*8.0m/s + 4.0kg*0m/s = 4.0kg*0m/s +4.0kg*v2f
Calculating this we get:
32.0kg*m/s + 0kg*m/s = 0kg*m/s + 4.0kg*v2f
Rearrange for v2f:
v2f = 
This gives us 8.0 m/s as the final velocity of the second ball.
b)
Since the collision is assumed to be elastic it means that the kinetic energy must be equal before and after the collision.
This means we use the formula:
Ek =
+
=
+ 
Substituting in values:
Ek = 0.5*4.0kg*(8.0m/s)^2 + 0.5*4.0kg*(0m/s)^2 = 0.5*4.0kg*(0m/s)^2 + 0.5*4.0kg*(8.0m/s)^2
This simplifies to:
Ek= 128J + 0J = 0J + 128J
This shows us that the kinetic energy is equal on each side therefore the collision is Elastic and no energy has been lost.
Answer:
Iron
Explanation:
The buoyant force equals to the weight of water being displaced by the object.
Since, the volume of both iron and wood is equal and the wood is not completely submerged, but the iron block is completely submerged i.e more volume of the water is being displaced by the iron block.
Hence, the buoyant force is more on the iron.