Answer:
you don't have to its your choice whether you want to or not.
Explanation:
but you can not leave the fact that there dieing
From the information given in the drawing, it's not possible
to tell whether the displacements are equal, because we
don't know what the vectors represent.
If the vectors are distances, then the displacements are not
equal, because the distance between the start and end points
are not equal.
If the vectors are speeds, then they don't tell us anything about
the distance between the start and end points, so we can't calculate
the displacements.
Answer:
C) upward
Explanation:
The problem can be solved by using the right-hand rule.
First of all, we notice at the location of the negatively charged particle (above the wire), the magnetic field produced by the wire points out of the page (because the current is to the right, so by using the right hand, putting the thumb to the right (as the current) and wrapping the other fingers around it, we see that the direction of the field above the wire is out of the page).
Now we can apply the right hand rule to the charged particle:
- index finger: velocity of the particle, to the right
- middle finger: direction of the magnetic field, out of the page
- thumb: direction of the force, downward --> however, the charge is negative, so we must reverse the direction --> upward
Therefore, the direction of the magnetic force is upward.
Answer:
Field, In physics, a region in which each point is affected by a force.
Explanation:
Answer:
a) see attached, a = g sin θ
b)
c) v = √(2gL (1-cos θ))
Explanation:
In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by
Wₓ = m a
W sin θ = m a
a = g sin θ
b) The diagram is the same, the only thing that changes is the angle that is less
θ' = 9/2 θ
c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.
The easiest way to find linear speed is to use conservation of energy
Highest point
Em₀ = mg h = mg L (1-cos tea)
Lowest point
Emf = K = ½ m v²
Em₀ = Emf
g L (1-cos θ) = v² / 2
v = √(2gL (1-cos θ))