We have to know the molarity of solution obtained when 5.71 g of Na₂CO₃.10 H₂O is dissolved in water and made up to 250 cm³ solution.
The molarity of solution obtained when 5.71 g of sodium carbonate-10-water (Na₂CO₃.10 H₂O) is dissolved in water and made up to 250.0 cm^3 solutionis: (A) 0.08 mol dm⁻³
The molarit y of solution means the number of moles of solute present in one litre of solution. Here solute is Na₂CO₃.10 H₂O and solvent is water. Volume of solution is 250 cm³.
Molar mass of Na₂CO₃.10 H₂O is 286 grams which means mass of one mole of Na₂CO₃.10 H₂O is 286 grams.
5.71 grams of Na₂CO₃.10 H₂O is equal to
= 0.0199 moles of Na₂CO₃.10 H₂O. So, 0.0199 moles of Na₂CO₃.10 H₂O present in 250 cm³ volume of solution.
Hence, number of moles of Na₂CO₃.10 H₂O present in one litre (equal to 1000 cm³) of solution is
= 0.0796 moles. So, the molarity of the solution is 0.0796 mol/dm³ ≅ 0.08 mol/dm³
The correct answer to this question is that the length of 14 is it’s half Which would be 7
Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.
Answer:
endormic
Explanation:
It occurs at a temperature and pressures below a substance's triple point on its phase diagram, which corresponds to the lowest pressure at which the substance can exist as a liquid
Answer:
energy from the sun that reaches earth