Fractional Distillation is the answer
Answer:

Explanation:
Hello there!
In this case, we can identify the solution to this problem via the Dalton's rule because the partial pressure of helium is given by:

Whereas the mole fraction of helium is calculated by firstly obtaining the moles and then the mole fraction:

Then, we calculate the partial pressure as shown below:

Best regards!
Answer:
k ≈ 9,56x10³ s⁻¹
Explanation:
It is possible to solve this question using Arrhenius formula:

Where:
k1: 1,35x10² s⁻¹
T1: 25,0°C + 273,15 = 298,15K
Ea = 55,5 kJ/mol
R = 8,314472x10⁻³ kJ/molK
k2 : ???
T2: 95,0°C+ 273,15K = 368,15K
Solving:



<em>k ≈ 9,56x10³ s⁻¹</em>
I hope it helps!
0.012moldm⁻³
Explanation:
Given parameters:
Mass of AgNO₃ = 1000mg
Volume of water = 500mL
Unknown:
Molarity of solution = ?
Solution:
The molarity of a solution is the number of moles of a solute dissolved in volume of solvent.
Molarity = 
Number of moles of AgNO₃ = ?
Number of moles = 
Molar mass of AgNO₃ = 108 + 14 + 3(16) = 170g/mol
convert mass to g;
1000mg = 1g
Number of moles =
= 0.00588moles
convert the given volume to dm³;
1000mL = 1dm³;
500mL = 0.5dm³
Now solve;
Molarity =
= 0.012moldm⁻³
learn more:
Molarity brainly.com/question/9324116
#learnwithBrainly