Answer:
0.67 seconds
8.576 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²

Time taken by the stunt woman to drop to the saddle is 0.67 seconds which is the time she will stay in the air.
Speed of the horse = 12.8 m/s
Distance = Speed × Time
⇒Distance = 12.8×0.67
⇒Distance = 8.576 m
Hence, the distance between the horse and stunt woman should be 8.576 m when she jumps.
<span>10 hertz
Hertz is the frequency of oscillation which is the number of oscillations per second. So if something takes 0.10 s per oscillation, divide 1 second by the period to get the frequency. So
1 / 0.10s = 10 1/s = 10 Hertz
Therefore the object is vibrating at 10 hertz.</span>
Answer:
<em>The distance the car traveled is 21.45 m</em>
Explanation:
<u>Motion With Constant Acceleration
</u>
It occurs when an object changes its velocity at the same rate thus the acceleration is constant.
The relation between the initial and final speeds is:
![v_f=v_o+at\qquad\qquad [1]](https://tex.z-dn.net/?f=v_f%3Dv_o%2Bat%5Cqquad%5Cqquad%20%5B1%5D)
Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
The distance traveled by the object is given by:
![\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%3Dv_o.t%2B%5Cfrac%7Ba.t%5E2%7D%7B2%7D%5Cqquad%5Cqquad%20%5B2%5D)
Solving [1] for a:

Substituting the given data vo=0, vf=6.6 m/s, t=6.5 s:


The distance is now calculated with [2]:

x = 21.45 m
The distance the car traveled is 21.45 m
Answer:
its good no need to change anything :))