Answer:
28,400 N
Explanation:
Let's start by calculating the pressure that acts on the upper surface of the hatch. It is given by the sum of the atmospheric pressure and the pressure due to the columb of water, which is given by Stevin's law:

On the lower part of the hatch, there is a pressure equal to

So, the net pressure acting on the hatch is

which acts from above.
The area of the hatch is given by:

So, the force needed to open the hatch from the inside is equal to the pressure multiplied by the area of the hatch:

The answer is : We’ll see the bell move, but we won’t hear it ring. This is because light can travel through vacuum but sound cannot. Sound waves are vibrations of particles in any media, so sound requires a medium to travel, and it cannot travel in a vacuum as there is no particles to vibrate.
Answer:
Hi
before I answer a question I think very deeply and try my best, hope it helps...
As you know there are many different types of systems. For example, The solar system, galaxies, quantum systems, atoms, molecules, orchestras, nervous system, etc, things you may not have even considered a system. To get to the basis of a system we must first understand what a system is then we will show some examples. A system is a group of Parts (parts could mean anything even dark energy and dark matter) that work together to accomplish something. For example, your body has many many trillions of cells that all try to accomplish the functions of humans which include thinking, moving, breathing, circulation, etc. Cells in turn are a system that have counterparts called organelles that accomplish harvesting energy, making new proteins, getting rid of waste, and so on. These are some systems which we highly dependent upon.
Well i hope it helped
Spiky Bob your answerer
Answer:
Explanation:
The picture attached shows all the necessary explanations
Answer:
Absorption, in wave motion, the transfer of the energy of a wave to matter as the wave passes through it. The energy of an acoustic, electromagnetic, or other wave is proportional to the square of its amplitude—i.e., the maximum displacement or movement of a point on the wave; and, as the wave passes through a substance, its amplitude steadily decreases.
Explanation: