Answer:
633 grams of sugar can be dissolved in 300 g of H₂O
Explanation:
Solubility is the measure of the ability of a certain substance to dissolve in another and form a homogeneous system. Solubility is then the maximum amount of a solute that a solvent can receive and is expressed by concentration units.
The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three. Remember that proportionality is a constant relationship or ratio between different magnitudes.
If the relationship between the magnitudes is direct, that is, when one magnitude increases, so does the other (or when one magnitude decreases, so does the other) , the direct rule of three must be applied. To solve a direct rule of three, the following formula must be followed:
a ⇒ b
c ⇒ x
Then:

You can apply the rule of three as follows: if by definition of solubility in 100 grams of H₂O there are 211 grams of sugar, in 300 g of H₂O how much sugar is there?

sugar= 633 grams
<u><em>633 grams of sugar can be dissolved in 300 g of H₂O</em></u>
Hey. Hey. You know there’s something called google?
HISNDHENSKSNS
Balanced equation:
<span>CaO + 2 HCl --> CaCl2 + H2O </span>
<span>Calculate moles of each reactant: </span>
<span>60.4 g CaO / 56.08 g/mol = 1.08 mol CaO </span>
<span>69.0 g HCl / 36.46 g/mol = 1.89 mol HCl </span>
<span>Identify the limiting reactant: </span>
<span>Moles CaO needed to react with all HCl: </span>
<span>1.89 mol HCl X (1 mol CaO / 2 mol HCl) = 0.946 mol CaO </span>
<span>Because you have more CaO than that available, HCl is the limiting reactant. </span>
<span>Calculate moles and mass CaCl2: </span>
<span>1.89 mol HCl X (1 mol CaCl2 / 2mol HCl) X 111.0 g/mol = 105 g CaCl2</span>
Answer:
9 : 8
Explanation:
Aluminum oxide has the following formula Al₂O₃.
Next, we shall determine the mass of Al and O₂ in Al₂O₃. This can be obtained as follow:
Mass of Al in Al₂O₃ = 2 × 27 = 54 g
Mass of O₂ in Al₂O₃ = 3 × 16 = 48 g
Finally, we shall determine the mass ratio of Al and O₂. This can be obtained as follow:
Mass of Al = 54 g
Mass of O₂ = 48 g
Mass of Al : Mass of O₂ = 54 : 48
Mass of Al : Mass of O₂ = 54 / 48
Mass of Al : Mass of O₂ = 9 / 8
Mass of Al : Mass of O₂ = 9 : 8
Therefore, the mass ratio of Al and O₂ in Al₂O₃ is 9 : 8
Answer:
, product favoured
Explanation:
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and present in an aqueous are represented in the form of ions.
Net ionic equation : In the net ionic equations, we do not include the spectator ions in the equations.
When hydrochloric acid react with potassium cyanide, then it gives potassium chloride and hydrocyanic acid as products.
The complete ionic equation will be:
The net ionic equation will not contain spectator ions which are
and
:

The reaction is product favoured.