B is the answer..!
Disturbance is in a circular motion
Answer:
Highest speed: He
Lowest speed: CO2
Explanation:
The rms speed (average speed) of the molecules/atoms in an ideal gas is given by:

where
R is the gas constant
T is the absolute temperature of the gas
M is the molar mass of the gas, which is the mass of the gas per unit mole
From the equation, we see that at equal temperatures, the speed of the molecules in the gas is inversely proportional to the molar mass: the higher the molar mass, the lower the speed, and vice-versa.
In this problem, we have 5 gases:
(CO2) (O2) (He) (N2) (CH4)
Their molar mass is:
CO2: 44 g/mol
O2: 16 g/mol
He: 4 g/mol
N2: 14 g/mol
CH4: 16 g/mol
The gas with lowest molar mass is Helium (He): therefore, this is the gas with greatest average speed.
The gas with highest molar mass is CO2: therefore, this is the gas with lowest average speed.
Answer:
18 electrons
Explanation:
Note: The third energy level can actually hold up to 18 electrons, so it is not really filled when it has 8 electrons in it.
Answer:
It's ferric oxide Fe2O3
Explanation:
I don't say u must have to mark my ans as brainliest but if it has really helped u plz don't forget to thank me plz...
Answer:
Option d. 0.10 m Cr₂(SO₄)₃
Explanation:
Formula for the osmotic pressure is determined as:
π = M . R . T . i
So you have to take account the i (Van't Hoff factor, numbers of ions dissolved)
Urea is an organic compound, so the i value is 1
Zync acetate can be dissociated:
Zn(CH₃COO)₂ → 1Zn²⁺ + 2CH₃COO⁻
In this case, the i is 3. (you see, the stoichiometry of ions)
Cr₂(SO₄)₃ → 0.10 m
Chromium sulfate is dissociated:
Cr₂(SO₄)₃ → 2Cr³⁺ + 3SO₄⁻²
i = 5
BaI₂ → 0.16 m
BaI₂ → 1Ba²⁺ + 2I⁻
i = 3