cot(<em>θ</em>) = cos(<em>θ</em>)/sin(<em>θ</em>)
So if both cot(<em>θ</em>) and cos(<em>θ</em>) are negative, that means sin(<em>θ</em>) must be positive.
Recall that
cot²(<em>θ</em>) + 1 = csc²(<em>θ</em>) = 1/sin²(<em>θ</em>)
so that
sin²(<em>θ</em>) = 1/(cot²(<em>θ</em>) + 1)
sin(<em>θ</em>) = 1 / √(cot²(<em>θ</em>) + 1)
Plug in cot(<em>θ</em>) = -2 and solve for sin(<em>θ</em>) :
sin(<em>θ</em>) = 1 / √((-2)² + 1)
sin(<em>θ</em>) = 1/√(5)
Answer:
please do the math luke a lesson and the beta is very weird so you want to do something about that so i suggest that you do 300.
Answer:B
Step-by-step explanation:
To solve this problem you must apply the proccedure shown below:
1. You have:
<span>
In(2x+3)=7
2. Then, you must apply log(e), as below:
</span><span>
In(2x+3)=ln(e^7)
3. Now, you obtain:
2x+3=e^7
4. Youy must clear the variable "x", as below:
2x=e^7-3
</span> x=(e^7-3)/2
<span>
5. Therefore, the value of "x" is:
x=546.817
</span><span>
The answer is: </span>x=546.817<span> </span>