Answer:
This can be done with Python. If you learn machine learning, you can use python to automate your computers to do things.
<h3>2 things you can do with a computer with python + more</h3>
- Make and run games or applications easier
- Your computer can send or tell you messages at a given time.
I hope this answers you. If not, I may change something accordingly.
Answer:
fluorine
Explanation:
The element fluorine has 9 protons and 9 electrons.
Answer:
0.095 moles of Calcium is there in 5.74 x 1022 atoms of calcium.
Explanation:
- As we know, 6.023*10^23 atoms of an element is equal to its atomic weight.
And, 6.023*10^23 atoms of an element is also equal to 1 mole of the element.
We have,
- 6.023*10^23 atoms of element calcium equals to 1 mole of Calcium
- 5.74*10^22 atoms of element calcium equals to
(1/(6.023*10^.23)) * 5.74*10^22 moles of calcium
Therefore,
- 5.74 x 1022 atoms of calcium= 0.095 moles of calcium.
Answer:
The equilibrium pressure of NO2 is 0.084 atm
Explanation:
Step 1: Data given
A reaction mixture initially contains 0.86 atm NO and 0.86 atm SO3.
Kp = 0.0118
Step 2: The balanced equation
NO( g) + SO3( g) ⇌ NO2( g) + SO2( g)
Step 3: The initial pressures
p(NO) = 0.86 atm
p(SO3) = 0.86 atm
p(NO2) = 0 atm
p(SO2) = 0 atm
Step 4: The pressure at the equilibrium
For 1 mol NO we need 1 mol SO3 to produce 1 mol NO2 and 1 mol SO2
p(NO) = 0.86 -x atm
p(SO3) = 0.86 -xatm
p(NO2) = x atm
p(SO2) = x atm
Step 5: Define Kp
Kp = ((pNO2)*(pSO2)) / ((pNO)*(pSO3))
Kp = 0.0118 = x²/(0.86 - x)²
X = 0.08427
p(NO) = 0.86 -0.08427 = 0.77573 atm
p(SO3) = 0.86 -0.08427 = 0.77573 atm
p(NO2) = 0.08427 atm
p(SO2) = 0.08427 atm
The equilibrium pressure of NO2 is 0.08427 atm ≈ 0.084 atm