Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×
/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²
Hydroelectricity is the best answer.
This is an article by the EIA, but the pie graph is the most helpful: https://www.eia.gov/energyexplained/?page=us_energy_home
Answer:
B
Explanation:
When the average kinetic energy increases, the thermal energy increases
<u>Answer:</u>
<em>Jody will have strong bones and show muscle hypertrophy.
</em>
<u>Explanation:</u>
Long distance running practiced regularly helps in <em>increasing the strength of bones</em>. Muscular hypertrophy is the increase in mass of skeletal muscles due to the increase in the size of myofibrils or increase in muscle glycogen storage. <em>Strength training exercises</em> performed regularly induce muscular hypertrophy.
During strength <em>training exercises muscles</em> undergo contraction and repeated contraction breaks muscle fibres. New muscle fibres are added as a means of repair and this happens at the relaxing phase of muscles. More muscle fibres are added to <em>compensate the damage and thus muscle mass increases.
</em>
Answer:
A. Highly viscous and associated with violent eruptions
Explanation:
Most silica rich magma have high viscosity and huge amount of trapped gases within them. As they continue to upwell and expand, the gases causes violent eruptions near Volcanoes. Most granitic/rhyolitic magma are silica rich.