Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 = 
B. Amplitude
It is the maximum distance from the equilibrium point of the pendulum.
Momentum
= mass x velocity
= 0.2 x 5
= 1 kg m/s
Answer: 87500J
Explanation:
Given that,
Power exerted by crane = 3,500 W
Time taken = 25 seconds
work done by crane = ?
Since power is the rate of work done per unit time, then power is workdone by the crane divided by the time taken.
i.e power = work / time
3,500 W = work / 25 seconds
Work = 3500W x 25 seconds
Work = 87500J
Thus, 87500 joules of work was done by the crane.