First, let us derive our working equation. We all know that pressure is the force exerted on an area of space. In equation, that would be: P = F/A. From Newton's Law of Second Motion, force is equal to the product of mass and gravity: F = mg. So, we can substitute F to the first equation so that it becomes, P = mg/A. Now, pressure can also be determined as the force exerted by a fluid on an area. This fluid can be measure in terms of volume. Relating volume and mass, we use the parameter of density: ρ = m/V. Simplifying further in terms of height, Volume is the product of the cross-sectional area and the height. So, V = A*h. The working equation will then be derived to be:
P = ρgh
This type of pressure is called the hydrostatic pressure, the pressure exerted by the fluid over a known height. Next, we find the literature data of the density of seawater. From studies, seawater has a density ranging from 1,020 to 1,030 kg/m³. Let's just use 1,020 kg/m³. Substituting the values and making sure that the units are consistent:
P = (1,020 kg/m³)(9.81 m/s²)(11 km)*(1,000 m/1km)
P = 110,068,200 Pa or 110.07 MPa
Change in volume = mass x coefficient of linear expansion x change in temperature
.002 x .0001802 x 30 = .000010812
initial volume + change in volume = Final volume
.002 + .000010812 = .002010812 m cubed
Because everybody in community needs to be smart & have some type of knowledge
A compound Machine is 2 machines that work together in order to make a task easier.
Answer:
Density of 127 I = 
Also, 
Explanation:
Given, the radius of a nucleus is given as
.
where,
- A is the mass number of the nucleus.
The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

For the nucleus 127 I,
Mass, M = 
Mass number, A = 127.
Therefore, the density of the 127 I nucleus is given by

On comparing with the density of the solid iodine,
