Answer:
<h2>a) 50°</h2><h2>b) 40°</h2>
Explanation:
Check the complete diagram n the attachment below
a) The angle of incidence on a plane surface is the angle between the incidence ray and the normal ray acting on a plane surface. The normal ray is the ray perpendicular to the surface while the incidence ray is the ray striking a plane surface.
According to the diagram, the angle of reflection r₂ on M₂ is 90°-g where g is the angle of glance.
Given angle of glance on M₂ to be 40°, r₂ = 90-40 = 50°
According the second law of reflection, the angle of incidence = angle of reflection, therefore i₂ = r₂ = 50° (on M₂)
Also ∠OO₂O₁ = ∠OO₁O₂ = 40° (angle of glance on M₁){alternate angle}
The angle of incidence on M₁ = 90° - 40° = 50°
b) The angle of incidence to the surface of M₁(∠PO₁A)will be the angle of glance on M₁ which is equivalent to 40°
They are positive and remain inside the nucleus.
Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m
Answer:
if you mean *responsible* for the transport of water from the roots to leaves is Xylem
The final volume of the gas is 238.9 mL
Explanation:
We can solve this problem by using Charle's law, which states that for a gas kept at constant pressure, the volume of the gas (V) is proportional to its absolute temperature (T):

Which can be also re-written as

where
are the initial and final volumes of the gas
are the initial and final temperature of the gas
For the gas in the balloon in this problem, we have:
is the initial volume
is the initial absolute temperature
is the final volume
is the final temperature
Solving for
,

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly