Answer:
-5.8868501529 m/s² or -5.8868501529g
0.118909090909 s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²

Dividing by g

The acceleration is -5.8868501529 m/s² or -5.8868501529g

The time taken is 0.118909090909 s
Answer:
a). P=11.04kW
b). Pmax=11.38 kW
c). Wt=6423.166kJ
Explanation:
The power of the motor when the speed is constant is the work in a determinate time.

The work is the force the is applicated in a distance so
W=F*d
replacing:
and
determinate distance in time is velocity so
a).


b).
The maximum power must the motor provide, is the maximum force with the maximum speed of the motor in this case
The first step is find the acceleration so

The maximum force is when the car is accelerating so

so the maximum force is the maximum force by the maximum speed

c).
The total energy transfer without any friction is the weight move in the high axis y in this case, so is easy to know that distance
W=m*g*h
h=Length*sin(33.5)
W=m*g*Length*sin(33.5)
W=950 kg*9.8* 1250m*sin(33.5)
W=6423166.667 kJ
W=6423.166 kJ
Answer:
Following are the solution to this question
Explanation:
please find the complete question in the attached file.
In point a:
The answer is "bottom".
In point b:
Using formula:


Answer:
26.67 m/s
Explanation:
From the law of conservation of linear momentum, the initial sum of momentum equals the final sum.
p=mv where p is momentum, m is the mass of object and v is the speed of the object
Initial momentum
The initial momentum will be that of basketball and volleyball, Since basketball is initially at rest, its initial velocity is zero

Final momentum
