Answer:
<u>We are given:</u>
initial velocity (u) = 20m/s
acceleration (a) = 4 m/s²
time (t) = 8 seconds
displacement (s) = s m
<u />
<u>Solving for Displacement:</u>
From the seconds equation of motion:
s = ut + 1/2 * at²
replacing the variables
s = 20(8) + 1/2 * (4)*(8)*(8)
s = 160 + 128
s = 288 m
Answer:
a) I = 3.63 W / m²
, b) I = 0.750 W / m²
Explanation:
The intensity of a sound wave is given by the relation
I = P / A = ½ ρ v (2π f
)²
I = (½ ρ v 4π² s_{max}²) f²
a) with the initial condition let's call the intensity Io
cte = (½ ρ v 4π² s_{max}²)
I₀ = cte s² f₀²
I₀ = cte 10 6
If frequency is increase f = 2.20 10³ Hz
I = constant (2.20 10³) 2
I = cte 4.84 10⁶
let's find the relationship of the two quantities
I / Io = 4.84
I = 4.84 Io
I = 4.84 0.750
I = 3.63 W / m²
b) in this case the frequency is reduced to f = 0.250 10³ Hz and the displacement s = 4 s or
I = cte (f s)²
I = constant (0.250 10³ 4)²
I = cte 1 10⁶
the relationship
I / Io = 1
I = Io
I = 0.750 W / m²
Answer:
Second Option
Explanation:
The "hard drive" or the second option is one of the main components of storing information on a computer. You already have a hard drive built into your computer, or laptop when you buy it, and you can buy additional hard drives in the form of plugins that can store even more data if your original hard drive becomes full of data.
Hope this helps.
The y-component of the stone's velocity when it is 8 m below the hand is 14.86 m / s
v² = u² + 2 a s
s = Displacement
u = Initial velocity
a = Acceleration
u = 8 m / s
s = 8 m
v² = 8² + 2 * 9.8 * 8
v² = 64 + 156.8
v = √ 220.8
v = 14.86 m / s
The equation used to solve the problem is an equation of motion. These equations are designed to locate an object in motion using components such as velocity, displacement, acceleration and time.
Therefore, the y-component of the stone's velocity is 14.86 m / s
To know more about Equations of motion
brainly.com/question/5955789
#SPJ1