When a mirror is rotated . . .
-- The incident ray doesn't turn. It's just the line from the source to the mirror.
It would be there, in the same place, even if there was no mirror.
-- The normal turns. It's the line perpendicular to the mirror, so it must turn
with the mirror.
-- Since the normal tuns and the incident ray doesn't, the angle between them
must change. And since the angle of the reflected ray is equal to the angle of
the incident ray, the reflected ray must also turn.
Answer:
B. Light passes through a small opening
Explanation:
Diffraction is one of the properties of wave defined as the bending of wave around corners. It occurs mostly when waves passes through a tiny opening or slit. The type of waveform generated by the wave depends on the type of opening or slit that the medium passes through. The opening can be tiny or large.
Based on the definition, it can be inferred that the situation that causes light waves to diffract is when the light passes through a small opening. For example, the light of a torch passing through a tiny door hole is diffraction.
The Richter Scale<span> is not commonly </span>used<span> anymore, except for small </span>earthquakes<span>recorded locally, for which ML and Mblg are the only </span>magnitudes<span> that can be measured. For all other </span>earthquakes<span>, the </span>moment magnitude scale<span> is a more accurate measure of the </span>earthquake<span> size.</span>
Answer:
u = - 20 cm
m =
Given:
Radius of curvature, R = 10 cm
image distance, v = 4 cm
Solution:
Focal length of the convex mirror, f:
f = 
Using Lens' maker formula:

Substitute the given values in the above formula:


u = - 20 cm
where
u = object distance
Now, magnification is the ratio of image distance to the object distance:
magnification, m =
magnification, m =
m =
m =
Explanation:
- effect of density in speed of sound.
- effect of direction of wind in speed of sound.
because there is no medium to travel sound in vacuum.
hope it helps.