To solve this problem we will apply the concepts related to gravitational potential energy.
This can be defined as the product between mass, gravity and body height.
Mathematically it can be expressed as


Therefore the change in the internal energy of the system is 255.78
The final velocity of the ball that is dropped from a height of 200m is v = 44.73 m/s .
<h3>What is velocity with example?</h3>
The rate at which an object is travelling in one direction is referred to as its velocity. an automobile traveling north on a highway, or a rocket taking off. Its velocity vector's absolute value always is equal to the motion's speed because it is a scalar.
<h3>Briefing:</h3>
Given the initial velocity of the ball (u) = 0
Distance travelled by the ball (s) = 200m
Acceleration (a) = 10 m/s²
As we know:
v² = u² + 2as
Putting values:
v² = 0+2 × (10 m/s²) × (200 m)
v = 44.73 m/s.
To know more about Velocity visit:
brainly.com/question/18084516
#SPJ9
Answer and Explanation:
The law of conversation of energy states that energy cannot be created or destroyed. The pendulum slows down and stops eventually not because the kinetic energy is destroyed, but it is transferred into sound and heat energy instead because there is air resistance and friction.
Kinetic energy => Gravitational potential energy (Loop but some energy transferring to heat and sound each time)