Answer:
100 N is the answer of the question
The speed of the car is exactly 150/7200 km/sec, or 125/6 meters/sec.
In more familiar units, that speed is equivalent to ...
-- (20 and 5/6) meters/sec
-- 75 km/hour
Using the formula:
a = (Vf - Vi) / t
Our initial velocity is 0 m/s, and our final velocity is 8.15 m/s, with a time period of 5 seconds:
a = (8.15 - 0.0) / 5
a = 1.63 m/s^2
If you know the acceleration due to gravity on the Moon, you can confirm this answer. The recorded gravitational acceleration on the Moon is 1.62 m/s^2.
<span>Now that you know the time to reach its maximum height, you have enough information to find out the initial velocity of the second arrow. Here's what you know about it: its final velocity is 0 m/s (at the maximum height), its time to reach that is 2.8 seconds, but wait! it was fired 1.05 seconds later, so take off 1.05 seconds so that its time is 1.75 seconds, and of course gravity is still the same at -9.8 m/s^2. Plug those numbers into the kinematic equation (Vf=Vi+a*t, remember?) for 0=Vi+-9.8*1.75 and solve for Vi to get.......
17.15 m/s</span>
<span>Social
i think so ,but i am not sure</span>