<h3>Answers are:
sine, tangent, cosecant, cotangent</h3>
Explanation:
On the unit circle we have some point (x,y) such that x = cos(theta) and y = sin(theta). The sine corresponds to the y coordinate of the point on the circle. Quadrant IV is below the x axis which explains why sine is negative here, since y < 0 here.
Since sine is negative, so is cosecant as this is the reciprocal of sine
csc = 1/sin
In quadrant IV, cosine is positive as x > 0 here. So the ratio tan = sin/cos is going to be negative. We have a negative over a positive when we divide.
Because tangent is negative, so is cotangent.
The only positive functions in Q4 are cosine and secant, which is because sec = 1/cos.
-4x+154 should be the answer
Answer:
Step-by-step explanation:
Area = 192 m²
Perimeter= 56 m
Width = x m
Perimeter = 56
2*(length + width) = 56
Divide the equation by 2
l + x = 56/2
l + x = 28
l = 28 - x
Area = 192 m²
l * w = 192
(28 - x)*x = 192
28x - x*x = 192
0 = 192 - 28x + x²
x² - 28x + 192 = 0
2) Equation is a quadratic equation. The roots of this equation will the dimensions of the rectangular plot.
3) The roots represent the width and length of the rectangle.
x² - 28x +192 = 0
Sum = -28
Product =192
Factors = -16 , -12 {-16 +(-12) = -28 & (-12)*(-16) = 192}
x² - 28x + 192 = 0
x² - 12x - 16x + (-16)*(-12) = 0
x(x -12) - 16(x - 12) = 0
(x - 12)(x -16) =0
x -12 = 0 ; x - 16 = 0
x = 12 ; x = 16
x = 12 ,16
4) Sum of the roots = 12 + 16 = 28
Sum of the roots = half of the perimeter
5) Product of the roots = 12*16 = 192 = area of the rectangle.
Answer:
The problem with this question is that it is missing an important number, which is the length of the tube. Assuming that the tube is 10 meters long (=1,000 centimeters long)
time (in distance traveled distance traveled distance
seconds) by particle A in cms by particle B in cms between both
particles in cms
1 97 49 854
2 93 47 714
3 89 45 580
4 85 43 452
5 81 41 330
6 77 39 214
7 73 37 104
8 69 35 0
After 8 seconds both particles should meet. Particle A traveled 664 centimeters and particle B traveled 336 centimeters.