Answer:
The middle, or the transitional metals
Explanation:
When naming elements, we use roman numerals to indicate what their charge is. The charge of an element is affected by their number of valence electrons (outermost electrons).
Transitional metals are generally <u>multivalent</u>, meaning that element has more than one possible number of valence electrons. This makes them have more than one possible charge. Roman numerals indicate which charge of that element is used/discussed.
b) The reactivity of alkali metals increases as atomic mass increases.
A sodium atom forms NA+1 ion by losing two electrons
<span>ideal gas law: PV = nRT so .....</span><span> V = PV/(RT) </span>
<span>
Initial number of moles of Cl, n = 0.943*5.11/(0.08206 × 286) mol = 0.2053 moles.
</span><span>
We know the molar mass of K (potassium) = 39.0 g/mol </span>
<span>sooo....
The Initial number of moles of K = 29.0 g/(39.0 g/mol) = 0.7436 moles</span>
<span>Find the balanced equation for the reaction : </span><span>2K + Cl2 → 2KCl </span>
<span>Mole ratio of K:Cl = 2:1 </span>
<span>So after the reaction, the amount of K needed = (0.2053 mol) × 2 = 0.4106 mol which is less than 0.7436 mol </span>
<span>
This means that K is in excess but Cl completely reacts. </span>
<span> So we know the mole ratio is Cl:KCl = 1 : 2
</span>
<span>Number of moles of Cl (completely) reacted = 0.2053 mol which means the n</span><span>umber of moles of KCl formed = (0.2053 mol) × 2 = 0.4106 mol </span>
<span>Molar mass of KCl = (39.0 + 35.5) g/mol = 74.5 g/mol </span>
<span>Mass of KCl formed = 0.4106 mol * 74.5 g/mol = 30.6 g</span>
Parents pass characteristics such as hair color, nose shape, and skin color to their offspring. Not all of the parents' characteristics will appear in the offspring, but the characteristics that are more likely to appear can be predicted.