A. The products have a lower potential energy than the reactants.
Answer:
D 1 and 3 only I am not sure
Explanation:
Answer:
Explanation:
4NH₃ (g) + 3O₂ (g) ⇒ 2N₂ (g) + 6H₂ O(1)
Δ
ΔH r =(2ΔH f(N 2 )+6ΔH f (H 2 O(l)))−(4ΔH f (NH 3 (g))+3ΔH f (O 2 (g)))
ΔH rex =[2×0+6×(−286)]−[4×(−46)+3×0]=−1716+186
ΔH rex =−1532kJ/mol
Thermodynamics is a branch of physical chemistry that studies heat and its effects and interactions. Governed by the four main laws, thermodynamics plays a huge role in physics and chemistry, and is also responsible for the law of conservation of energy, a fundamental rule in science.
Answer : The correct option is, (b) +0.799 V
Solution :
The values of standard reduction electrode potential of the cell are:
![E^0_{[H^{+}/H_2]}=+0.00V](https://tex.z-dn.net/?f=E%5E0_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D%3D%2B0.00V)
![E^0_{[Ag^{+}/Ag]}=+0.799V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.799V)
From the cell representation we conclude that, the hydrogen (H) undergoes oxidation by loss of electrons and thus act as anode. Silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half reaction will be:
Reaction at anode (oxidation) :
Reaction at cathode (reduction) :
The balanced cell reaction will be,

Now we have to calculate the standard electrode potential of the cell.

![E^o_{cell}=E^o_{[Ag^{+}/Ag]}-E^o_{[H^{+}/H_2]}](https://tex.z-dn.net/?f=E%5Eo_%7Bcell%7D%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D)

Therefore, the standard cell potential will be +0.799 V
Answer:
a)
,
, b)
, 
Explanation:
a) The ideal gas is experimenting an isocoric process and the following relationship is used:

Final temperature is cleared from this expression:


The number of moles of the ideal gas is:



The final temperature is:


The final pressure is:



b) The ideal gas is experimenting an isobaric process and the following relationship is used:

Final temperature is cleared from this expression:




The final volume is:


