Answer : 135 grams of sodium has 5.869 moles.
Solution : Given,
Mass of sodium = 135 grams
Molar mass of sodium = 23 g/mole
Formula used :

Now put all the given values in this formula, we get

Therefore, the moles of sodium present in 135 grams of sodium is, 5.869 moles.
Answer:
Explanation:
In an aqueous solution of potassium sulfate (K₂SO₄), the solute is K₂SO₄ and the solvent is water. The percentage by mass describes the grams of solute there are dissolved per 100 grams of solution. It can be calculated as:
mass percentage = (mass of solute/total mass of solution) x 100%
For example, in an aqueous solution which is 2% by mass of K₂SO₄, there are 2 grams of K₂SO₄ per 100 g of solution.
Answer: Electromagnetic waves are transverse in nature as they propagate by varying the electric and magnetic fields such that the two fields are perpendicular to each other.
Accelerated charges are responsible to produce electromagnetic waves.
Explanation:
Compound can be described using element symbol and numbers . it is a mixture which is result of two or more chemical element in such a way that atoms of different elements held together by chemical compound that are difficult to break . Most often a compound looks and behave like an element
for example :- Hydrogen and oxygen .. both of these elements are gaseous at room temperature and atmospheric pressure , but when both combined they both form compound water . ( H2O )