Answer:
b) 3.10
Explanation:
HF ⇄ H
+ + F
Using Henderson-Hasselbalch Equation:
pH = pKa + log [A-]/[HA].
Where;
pKa = Dissociation constant = -log Ka
Hence, pKa of HF = -log 7.2 x 10^-4 = 3.14266
[A-] = concentration of conjugate base after dissociation = moles of base/total volume
= 0.15 x 0.3/0.8
= 0.05625 M
[HA] = concentration of the acid = moles of acid/total volume
= 0.10 x 0.5/0.8
= 0.0625 M
Note: <em>Total volume = 500 + 300 = 800 mL = 0.8 dm3</em>
pH = 3.14266 + log [0.05625/0.0625]
= 3.14267 + (-0.04575749056)
= 3.09691250944
<em>From all the available options below:</em>
<em>a) 2.97
</em>
<em>b) 3.10
</em>
<em>c) 3.19
</em>
<em>d) 3.22
</em>
<em>e) 3.32</em>
The correct option is b.
Answer:
Sr is the more metallic element
Bi is the more metallic element
O is the more metallic element
As is the more metallic element
Explanation:
One thing should be clear; metallic character increases down the group but decreases across the period.
Hence, as we move across the period, elements become less metallic. As we move down the group elements become more metallic.
This is the basis upon which decisions were made about the metallic character of each of the elements listed above.
C.) wash hands, utensils, and surfaces with hot soapy water
Explanation:
the lone pairs will be negatively charged. these have a repulsion effect on other negatively charged electrons in the shells of atoms. picture a water molecule: the lone electron pair on the top of the oxygen will have a repulsion force on the 2 hydrogen atom's orbiting electrons to cause a bent molecular geometry.
Hey there!:
H is always +1 so the H's have a +3 charge.
O is always -2 so the O's have a -8 charge .
Now, suppose oxidation state for P = X , then :
+3 + X + (-8) = 0 (because of neutral molecule)
x = 8 - 3
x = + 5
So, X = +5 oxidation state.
Answer C
Hope that helps!