Answer:
Hydrogen = 2.5 * 10^21
Explanation:
Chemical Formula Glucose: C₆H₁₂O₆
One of the ways you could do this is to notice that for every carbon atom there are two Hydrogen atoms. You can state this more formally by using the formula to set up a ratio: 12/6 = hydrogen to Carbon
So if there are 1.250 * 10^21 Carbon atoms in the Glucose sample, then there will be twice as many hydrogen atoms.
H = 2 * 1.25 * 10^21 = 2.5 * 10^21 atoms
You could do this more formally by setting up a proportion.
6 Carbon / 12 Hydrogen = 1.25*10^21 / x Cross Multiply
6*x = 12 * 1.25*10^21 Combine the right
6x = 1.5 * 10^22 Divide by 6
x = 2.5 * 10^21
Yes. it was less clay which causes less area for impact
Answer:
Answers are in the explanation.
Explanation:
<em>Given concentrations are:</em>
- <em>SO₂ = 0.20M O₂ = 0.60M SO₃ = 0.60M</em>
- <em>SO₂ = 0.14M O₂ = 0.10M SO₃ = 0.40M </em>
- <em>And SO₂ = 0.90M O₂ = 0.50M SO₃ = 0.10M</em>
<em />
In the reaction:
2SO₂(g) + O₂(g) ⇄ 2SO₃(g)
Kc is defined as:
Kc = 15 = [SO₃]² / [O₂] [SO₂]²
<em>Where concentrations of each species are equilbrium concentrations.</em>
<em />
Also, you can define Q (Reaction quotient) as:
Q = [SO₃]² / [O₂] [SO₂]²
<em>Where concentrations of each species are ACTUAL concentrations.</em>
<em />
If Q > Kc, the reaction will shift to the left until Q = Kc;
If Q < Kc, the reaction will shift to the right until Q = Kc
If Q = Kc, there is no net reaction because reaction would be en equilibrium.
Replacing with given concentrations:
- Q = [0.60M]² / [0.60M] [0.20M]² = 15; Q = Kc → No net reaction
- Q = [0.40M]² / [0.10M] [0.14M]² = 82; Q > Kc, → Reaction will shift to the left
- Q = [0.10M]² / [0.50M] [0.90M]² = 0.015; Q < Kc → Reaction will shift to the right
<em />
Answer:
you know that they will be a displacement reaction that will form a barium salt:
Ba(NO3)2+ 2NaCl--> BaCl2 + 2NaNO3
So now that we have that formula and the molecular weight we can determine how much salt will be made. So here we convert the grams to moles
(42.3g Ba(NO3)2)*(1 mole/261.34g) = 0.16185 mol
In the molecular formula we know that 1 mole of Barium nitrate will create 1 mole of Barium chloride, so in this case (in a perfect world) you should get 0.16185 mole of barium chloride (208.23 g/mol) that we then have to convert to grams.
(0.16185 mol BaCl2) * ( 208.23 g/mol) = 33.7037 g of Barium Chloride (rounded to 3 significant digits = 33.7g)