A. is the answer
if u have any doubts ask me
please mark as brainliest
Answer:
36.8 L
Explanation:
We'll begin by converting 80 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 80 °C
T(K) = 80 + 273
T(K) = 353 K
Finally, we shall determine the volume occupied by the helium gas. This can be obtained as follow:
Number of mole (n) = 1.27 moles
Temperature (T) = 353 K
Pressure (P) = 1 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
PV = nRT
1 × V = 1.27 × 0.0821 × 353
V = 36.8 L
Thus, the volume occupied by the helium gas is 36.8 L
Answer : 0.0392 grams of Zn metal would be required to completely reduced the vanadium.
Explanation :
Let us rewrite the given equations again.
On adding above equations, we get the following combined equation.
We have 12.1 mL of 0.033 M solution of VO₂⁺.
Let us find the moles of VO₂⁺ from this information.
From the combined equation, we can see that the mole ratio of VO₂⁺ to Zn is 2:3.
Let us use this as a conversion factor to find the moles of Zn.
Let us convert the moles of Zn to grams of Zn using molar mass of Zn.
Molar mass of Zn is 65.38 g/mol.
We need 0.0392 grams of Zn metal to completely reduce vanadium.
Answer:
40.02 calories
Explanation:
V = 10 mL = 10g
we know t went <em>up</em> by 4°C, this is our ∆t as it is a change.
Formula that ties it together: Q = mc∆t
where,
Q = energy absorbed by water
m = mass of water
c = specific heat of water (constant)
∆t = temperature change
Q = (10 g) x (4.186 J/g•°C) x (4°C)
Q = 167.44 J
Joules to Calories:
167.44 J x 1 cal/4.184 J = 40.02 calories
(makes sense as in image it is close to the value).