Answer: 8.59 L of oxygen gas are needed to produce 100 kJ of energy at STP
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number of particles.
Standard condition of temperature (STP) is 273 K and atmospheric pressure is 1 atmosphere respectively.
1 mole of every gas occupy volume at STP = 22.4 L
The balanced chemical reaction is:
3909.9 kJ of of energy is produced by =
100 kJ of oxygen gas are needed to produce =
<u>Answer:</u> The freezing point of solution is 2.6°C
<u>Explanation:</u>
To calculate the depression in freezing point, we use the equation:
Or,
where,
=
Freezing point of pure solution = 5.5°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal freezing point depression constant = 5.12 K/m = 5.12 °C/m
= Given mass of solute (anthracene) = 7.99 g
= Molar mass of solute (anthracene) = 178.23 g/mol
= Mass of solvent (benzene) = 79 g
Putting values in above equation, we get:
Hence, the freezing point of solution is 2.6°C
Answer:
Number of boxes = 4
Explanation:
Given:
Mass of one box of jello = 250 grams
Total quantity want to purchase = 1 kg = 1 × 1,000 gram = 1,000 grams
Find:
Number of boxes in 1,000 grams = ?
Computation:
Number of boxes = Total quantity want to purchase / Mass of one box of jello
Number of boxes = 1,000 / 250
Number of boxes = 4
Therefore, 4 boxes of jello must be purchase to get 1 kg of Jello.
I used the genetic code table. mRNA codon ===> amino acid
1st base 2nd base 3rd base
A U U ===> Isoleucine
A U C ===> Isoleucine
The point mutation of codon AUU to AUC is a neutral mutation because it neither benefits nor deter the ability of the organism to survive and reproduce.
As you can see, Both codons result to the Isoleucine amino acid.
Another codon that will still result to the Isoleucin amino acid is AUA.
Answer: Th enthalpy of combustion for the given reaction is 594.244 kJ/mol
Explanation: Enthalpy of combustion is defined as the decomposition of a substance in the presence of oxygen gas.
W are given a chemical reaction:
To calculate the enthalpy change, we use the formula:
This is the amount of energy released when 0.1326 grams of sample was burned.
So, energy released when 1 gram of sample was burned is =
Energy 1 mole of magnesium is being combusted, so to calculate the energy released when 1 mole of magnesium ( that is 24 g/mol of magnesium) is being combusted will be: