The answer is D. His belief is was that atoms could not be split. That is what was disproved really fast ;)
T = 20 % : 20 / 100 = 0.2
m1 = solute
m2 = Solvent
T = m1 / m1 + m2
0.2 = 500 g / 500 g + m2
0.2 * ( 500 + m2 ) = 500
0.2 * 500 + 0.2 m2 = 500
100 + 0.2 m2 = 500
0.2 m2 = 500 - 100
0.2 m2 = 400
m2 = 400 / 0.2
m2 = 2000 g of water
hope this helps!
After 25 days, it remains radon 5.9x10^5 atoms.
Half-life is the time required for a quantity (in this example number of radioactive radon) to reduce to half its initial value.
N(Ra) = 5.7×10^7; initial number of radon atoms
t1/2(Ra) = 3.8 days; the half-life of the radon is 3.8 days
n = 25 days / 3.8 days
n = 6.58; number of half-lifes of radon
N1(Ra) = N(Ra) x (1/2)^n
N1(Ra) = 5.7×10^7 x (1/2)^6.58
N1(Ra) = 5.9x10^5; number of radon atoms after 25 days
The half-life is independent of initial concentration (size of the sample).
More about half-life: brainly.com/question/1160651
#SPJ4
Workplace Hazardous Materials Information System is the answer to this question. Hope it helps :)