Inorganic compounds make ionic bonds.
Answer:
there is 2% of hydrogen and 98% of nitrogen (mass percent)
Explanation:
assuming ideal gas behaviour
P*V=n*R*T
n= P*V/(R*T)
where P= pressure=1.02 atm , V=volume=7.47 L , T=absolute temperature= 296 K and R= ideal gas constant = 0.082 atm*L/(mole*K)
thus
n= P*V/(R*T) = 1.02 atm*7.47 L/( 296 K * 0.082 atm*L/(mole*K)) = 0.314 moles
since the number of moles is related with the mass m through the molecular weight M
n=m/M
thus denoting 1 as hydrogen and 2 as nitrogen
m₁+m₂ = mt (total mass)
m₁/M₁+m₂/M₂ = n
dividing one equation by the other and denoting mass fraction w₁= m₁/mt , w₂= m₂/mt , w₂= 1- w₁
w₁/M₁+w₂/M₂ = n/mt
w₁/M₁+(1-w₁) /M₂ = n/mt
w₁*(1/M₁- 1/M₂) + 1/M₂ = n/mt
w₁= (n/mt- 1/M₂) /(1/M₁- 1/M₂)
replacing values
w₁= (n/mt- 1/M₂) /(1/M₁- 1/M₂) = (0.314 moles/3.48 g - 1/(14 g/mole)) /(1/(1 g/mole)-1/(14 g/mole))= 0.02 (%)
and w₂= 1-w₁= 0.98 (98%)
thus there is 2% of hydrogen and 98% of nitrogen
Answer:

Explanation:
Quantity of heat required by 10 gram of ice initially warm it from -5°C to 0°C:

here;
mass, m = 10 g
specific heat capacity of ice, 
change in temperature, 


Amount of heat required to melt the ice at 0°C:

where, 
we know that no. of moles is = (wt. in gram)
(molecular mass)


Now, the heat required to bring the water to 70°C from 0°C:

specific heat of water, 
change in temperature, 


Therefore the total heat required to warm 10.0 grams of ice at -5.0°C to a temperature of 70.0°C:




Answer:
4.94x10^24 atoms Zn
Explanation:
By definition, there are 6.022x10^23 atoms in a mole of a substance. This is a conversion factor:
(6.022x10^23 atoms/mole)
(8.2 moles Zn)* (6.022x10^23 atoms/mole) = 4.94x10^24 atoms Zn